Read & Listen

Statistics

Members: 1
News: 9286
Web Links: 26
Visitors: 107345116

Who's Online

We have 1 guest online

Syndicate

Radiocarbon (Carbon-14) Dating And The Qur'anic Manuscripts Print E-mail
Written by mquran.org   
Tuesday, 14 November 2006

1. Introduction

Radiocarbon, or Carbon-14 dating was developed by W. F. Libby, E. C. Anderson and J. R. Arnold in 1949.[1] This radiometric dating technique is a way of determining the age of certain archaeological artefacts of a biological origin up to about 50,000 years old. It is perhaps one of the most widely used and best known absolute dating methods and has become an indispensable part of an archaeologist's tool-kit. In 1960, Libby was awarded the Nobel Prize in chemistry for radiocarbon dating.[2]

In this paper we would briefly discuss the principles and practice of radiocarbon dating. This will enable the reader to gain an appreciation of the advantages and disadvantages of this process. Is carbon dating applied to the Qur'anic manuscripts? Can radiocarbon dating provide more accurate results than traditional palaeographic techniques and associated methods? We will also focus on these questions in the final section of our discussion.

2. Principles And Practice

Carbon has two stable, nonradioactive isotopes: carbon-12 (12C), and carbon-13 (13C). In addition, there are tiny amounts of the unstable radioactive isotope carbon-14 (14C) on Earth. These isotopes are present in the following amounts 12C - 98.89 %, 13C - 1.11 % and 14C - 0.00000000010 %. In other words, one carbon 14 atom exists in nature for every 1,000,000,000,000 12C atoms in a living being.

ORIGIN OF CARBON-14

When cosmic rays enter the earth's atmosphere, they undergo various interactions with gas molecules which results in the production of fast moving neutrons. These energetic neutrons dissociate a nitrogen molecule into atoms and then reacts with these atoms to form 14C. The reaction can be written as:[3]

n + 14N 14C + p

where n is a neutron and p is a proton.

The highest rate of 14C production takes place at stratospheric altitudes of 9 to 15 km. Unlike the commonly available carbon, 12C, 14C is unstable and slowly decays, changing it back to nitrogen and releasing energy. This instability makes it radioactive.

ASSIMILATION OF CARBON-14 IN THE EARTH'S BIOSPHERE

The 14C isotope is brought to the earth by atmospheric activities (such as storms) and becomes fixed in the biosphere. Since 14C reacts just like 12C and 13C isotopes of carbon, it becomes part of a plant through photosynthesis reactions. Animals eating these plants in turn absorb 14C as well as the stable isotopes (i.e., 12C and 13C). This process of ingesting 14C continues as long as the plant or animal remains alive. Because 14C is so well mixed up with 12C, the ratio between 14C and 12C is the same in a leaf from a tree, or a part of an animal body. 14C also enters the Earth's oceans in an atmospheric exchange and as dissolved carbonate. The entire 14C inventory is termed the carbon exchange reservoir.[4]

DEATH, DECAY & DATING

As soon as a plant or animal dies, the metabolic function of carbon uptake is ceased. There is no replenishment of radioactive 14C and the amount of 14C gradually decreases through radioactive decay as given by the following equation.

14C 14N + b

After the emission of a b particle, 14C is changed into stable and non-radioactive nitrogen, 14N. In other words, the 14C/12C ratio gets smaller and smaller over time. So, we have something like a "clock" which starts ticking the moment a living being dies. Thus the radiocarbon dating method can, in principle, be uniformly applied throughout the world.

Libby, Anderson and Arnold were the first to measure the rate of this decay and found that the half life of 14C was 5568 years, i.e., in 5568 years half the 14C in the original sample will have decayed. After another 5568 years, half of that remaining material will have decayed, and so on. A 14C half-life of 5568 ± 30 years is known as the Libby half-life.[5] Later measurements of the Libby half-life indicated the figure was approximately 3% lower; a more accurate half-life was 5730 ± 40 years. This value is known as the Cambridge half-life.[6]

After 10 half-lives, there is a small amount of radioactive carbon left in a sample. In about 50,000-60,000 years, therefore, the limit of this technique is reached. It must be emphasized that the 14C decay is constant and spontaneous. In other words, the probability of decay for an atom of 14C in a sample is constant, thus making it amenable to the application of statistical methods for the analysis of counting data.

LIMITATIONS OF RADIOCARBON DATING

No technique is perfect and radiocarbon dating is no exception. Although with this technique almost any sample of organic material can be directly dated, there are a number of limitations which makes the technique imperfect.

  1. Size of the sample: The size of the archaeological sample is important, the larger the better, as purification of the sample removes some matter.

     
  2. Sample handling: The handling of samples must be done with care in order to avoid contamination by more recent carbon. The samples should be packed in air-tight and chemically neutral materials to avoid picking up new 14C from the atmosphere or packaging.

     
  3. 14C to 12C ratio: It is assumed that the ratio of 14C to 12C was constant in the earlier periods. This, however, is not true.[7] Radiocarbon samples taken and cross dated using other techniques like dendrochronology have shown that the ratio of 14C to 12C has varied significantly during the history of the Earth. Such a variation can be due to changes in the intensity of the cosmic radiation bombardment of the Earth. The 14C level is affected by variations in the cosmic ray intensity which is affected by variations caused by solar storms. A good example is the increased level of 14C in the atmosphere today as compared to about 20 years ago – a result of the recent depletion of the ozone layer. Also after the advent of the industrial era, the massive burning of fossil fuels released a lot of carbon dioxide that was depleted in 14C (Suess Effect).[8] This would make things which died at that time appear older in terms of radiocarbon dating. These variations are compensated by using standard calibration tables developed in the past 15-20 years in various radiocarbon laboratories.

     
  4. Limits due to exponential decay: As mentioned earlier, the decay of 14C is exponential in nature. This results in significant upper and lower limits. Radiocarbon dating is not very accurate for fairly recent deposits as very little decay has occurred. This gives rise to large standard deviations or errors in the date obtained. As for the practical upper limit, it is about 50,000 years. This is because so little 14C remains after almost 10 half-lives that it may be hard to detect and obtain an accurate reading, irrespective of the size of the sample.

MATHEMATICS, MEASUREMENT AND CALIBRATION

The radioactive decay of 14C follows what is called an exponential decay. Here the amount of 14C decreases at a rate proportional to its value. Mathematically, it can be expressed in the form of a differential equation, where N is the quantity of 14C and l is called the decay constant.[9]

Solving this differential equation gives the standard form of the decay equation:

N0 = number of radiocarbon atoms at time t = 0, i.e., the origin of the disintegration time right after the death of plant or animal,
N = number of radiocarbon atoms remaining after radioactive decay during the time t,
l = radiocarbon decay constant.

Perhaps the most famous of all the radiocarbon measurement techniques is the Accelerator Mass Spectrometry (AMS).[10] Just like other mass spectrometry studies, AMS is performed by converting the atoms in the sample into a beam of fast moving ions. The sample is first ionized by bombarding it with caesium ions and then focused into a fast-moving beam. The ions then enter the accelerator. The accelerator is used to help remove ions that might be confused with 14C ions before the final detection. The ions are filtered and finally the 14C ions enter the detector where they can be counted. In AMS, the radiocarbon atoms are directly detected instead of waiting for them to decay as in Gas Proportional Counting (GPC) or Liquid Scintillation Spectrometry (LSS).[11] Therefore, the sample sizes are typically very small, generally in the order of a few milligrams.

Raw radiocarbon measurements are usually reported in years Before Present or BP. Before Present (BP) years are the units of time, counted backwards to the past, used to report raw radiocarbon ages and dates referenced to the BP scale origin in the year 1950 CE.[12] There are two reasons as to why 1950 CE was established as the origin year for the BP scale. Firstly, in this year the calibration curves for carbon-14 dating were established and secondly, the year 1950 predates atmospheric testing of nuclear weapons, which altered the global balance of 14C to 12C (Atom Bomb Effect).[13]

The radiocarbon measurements reported in terms of BP years is directly based on the proportion of radiocarbon found in the sample. Its calculation is based on the assumption that the atmospheric radiocarbon concentration has always been the same as it was in 1950. As we have noted earlier, this is not true. The 14C to 12C ratio varied by a few percent over time. Hence this requires a need of calibration. Calibration of radiocarbon determinations is, in principle, very simple. The radiocarbon measurement of a sample is compared with a tree ring with the same proportion of radiocarbon. Since the calendar age of the tree rings is known, this gives the age of the sample. In practice, there are limitations. The measurements on both the sample and the tree rings have a limited precision. This will give rise to a range of possible calendar years. Furthermore, since the atmospheric radiocarbon concentration has varied in the past, there might be several possible ranges. In order to understanding how radiocarbon dating works in practice, let us study a few examples from the Qur'anic manuscripts.

3. Carbon-14 Dating Of Qur'anic Manuscripts

The mention of radiocarbon dating of Qur'anic manuscripts in the literature is very rare. Apart from perhaps the biggest drawback of this technique being very expensive, there are issues such as a wide range of calendar years in which a manuscript could have been written. This resulted in a faster development of the "traditional" methods of Qur'anic palaeography that utilized script, ornamentation and illumination which were then compared with their dated counterparts in architecture. The radiocarbon dating, on the other hand, even if it is carried out, is rarely mentioned. This will become clear when we discuss the Qur'anic manuscripts which were radiocarbon dated.

The E 20 manuscript (Figure 1), housed in the St. Petersburg branch of the Institute of Oriental Studies, comes from Uzbekistan. A detailed history of this manuscript was published by Efim Rezvan in 2000.[14] In the same year, he also published a radiocarbon dating of this manuscript.[15] A radiocarbon analysis was conducted on parchment fragments, the results of which are depicted in Figure 2.

(a)

(b)

Figure 2: (a) The radiocarbon concentration in the sample, calibration using the tree rings and depiction of possible ages of the sample in the form of a history (see text below). (b) A histogram showing the possible ages of the E 20 manuscript.[16]

The main elements of Figure 2(a) are as follows:

  • The left-hand axis shows radiocarbon concentration expressed in years Before Present or BP and the bottom axis shows calendar years derived from the tree ring data.

     
  • The dotted curve on the left, marked with a blue arrow, indicates the radiocarbon concentration in the sample.

     
  • The continuous curve, marked with a green arrow, shows the radiocarbon measurements on the tree rings.

     
  • The dotted histogram, marked with a red arrow, shows possible ages for the sample; the higher the histogram the more likely that age is. This histogram is enlarged in Figure 2(b).

In the case of this manuscript the radiocarbon result is 1150 ± 50 BP. This indicates that the age is 1150 BP with a standard uncertainty of ±50 years. The age of 1150 BP is calculated on the simplistic assumption that the amount of radiocarbon in the atmosphere has always been the same. This is not quite the case except that it is a rough indication of the age. Hence the measurement must be calibrated against samples of known ages, for example, the tree rings. The radiocarbon data and the calibration curve are used to plot the probability distribution of the age of the manuscript.

In the case of the E 20 manuscript from St. Petersburg, the 68.3% confidence level (1s) yields the ranges, 781 CE - 791 CE, 825 CE - 843 CE, 859 CE - 903 CE and 915 CE - 977 CE. The 95.4 % confidence level (2s) yields 775 CE - 995 CE. A palaeographic analysis of this manuscript proposed a date around the final quarter of the 8th century CE.[17] This dating was also agreed by François Déroche.[18]

It should be highlighted that when conducting radiocarbon analysis, almost any date within the specified range generated by the confidence level is equally possible scientifically. It is not the case that the range can be averaged to find the most probable date. Thus, given the wide range of calendar years, radiocarbon dating rarely provides unexpected information to an experienced palaeographer; however this is not always the case as we will see next.

THE AL-WALID MANUSCRIPT FROM SAN‘A', YEMEN (INV. NO. 20-33.1)

This is perhaps one of the most well-studied Qur'anic manuscripts and comes from Maktabat al-Jami‘ al-Kabir in San‘a' (Yemen). Hans-Caspar Graf von Bothmer from the University of Saarland, Germany, studied this manuscript in great detail from the point of view of script, ornamentation and illumination.[19] It is the earliest known and firmly dated manuscript from the late 1st century of hijra written in the Kufic script. This monumental Qur'anic manuscript has the dimensions of 51 cm in length by 47 cm in width (Figure 3). Its origin appears to be from Syria.

Using palaeography, ornamentation and illumination of this manuscript, von Bothmer dated it to the last decade of the 1st century of hijra, around 710 - 715 CE, in the reign of the Umayyad Caliph al-Walid. However, the radiocarbon dating of this manuscript suggests a date between 657 and 690 CE.[21] Again he confirms the dating of this manuscript elsewhere by pointing out that:

Certain features of the manuscript and the iconography intimate that this work was made for a member of the Umayyad family; historical circumstances suggest that caliph al-Walid himself may have commissioned it. However, the carbon dating points to a slightly earlier date.[22]

Here it is interesting to note that both the palaeographic considerations and radiocarbon dating have arrived at nearly the same conclusion, i.e., this manuscript dates to the last part of the 1st century of hijra. However, as von Bothmer has noted, the radiocarbon dating gives a slightly earlier date. This could be due to the fact that the radiocarbon dating gives the death of animal and not when the manuscript was actually written.

The interesting thing to note about this Qur'an from al-Walid's time is its uncanny resemblance to a number of large Qur'anic manuscripts typified as "Group 2" by Estelle Whelan. The most famous of them is the Chester Beatty 1404.[23] The Chester Beatty 1404 manuscript has very similar features that are reminiscent of the Umayyad period. Moritz published details of the twenty ornamented pages.[24] This manuscript was dated to 1st century of hijra by A. S. Yahuda.[25] Moritz, in the legends to his photographs, dated it to the 2nd / 3rd century hijra.[26] On the other hand, Josef von Karabacek dated it to the 3rd century.[27] However, now a firm dating of a Qur'an belonging to "Group 2" from al-Walid's time suggests that the Chester Beatty 1404 manuscript also dates from similar period, i.e., either late 1st century or early second century of hijra. Furthermore, this also lends support to the early dating of the numerous primitive hijazi manuscripts.

A MONUMENTAL QUR'ANIC MANUSCRIPT IN TASHKENT ATTRIBUTED TO CALIPH ‘UTHMAN

Approximately one third of the Qur'an from which this massive folio originates - the ‘Uthman Qur'an (as shown below), is housed in Tashkent in Uzbekistan. Late in the 19th century the manuscript was in St. Petersberg, Russia, where it was studied by the Russian orientalist A. F. Shebunin and in 1905 a facsimile of it was published. It would appear that during this period in St. Petersberg, a number of folios were separated from this manuscript and subsequently ended up under the hammer at Christie's[28] with some folios appearing in Sam Fogg's collection of Islamic art.[29]

This is a massive Qur'anic manuscript on vellum with a size of approximately 55 cm x 70 cm, showing a well-formed Kufic script without pointing or diacritics (Figure 4). The verse endings are marked by small panels of diagonals lines; the tenth verse is marked with a square medallion illuminated in blue, green, red and manganese with a stellar design. Shebunin dated this manuscript to the late first / early second century hijra.[30] On the basis of the orthography as observed in the 1905 facsimile, Jeffrey dated it to the early ninth century.[31] More recently, Déroche had assigned a date to the second half of the eight century.[32] The carbon-dating of a folio from this manuscript was carried out at Oxford. The result showed a 68% probability of a date between 640 CE and 765 CE, and a 95% probability of a date between 595 CE and 855 CE.[33] Commenting on this result, Rezvan noted that the paleographic dating of this manuscript also indicated a date at the turn of the eight/ninth century CE.[34]

The extra-ordinary size of the folios from this Qur'an is unparalleled in publications in the Western world. Folios from the Tashkent manuscript were sold at Christie's (London) as lot nos. 225, 225a on 22nd October 1992;[36] and lot nos. 29, 30 on 21st October 1993.[37] In the years 2000 and 2003, a couple more folios appeared in Sam Fogg's Islamic Manuscripts / Islamic Calligraphy catalogues.[38]

Our discussion points to the fact that the palaeographic and the radiocarbon datings sometimes nearly match each other. In fact, similar conclusions have been reached for the Dead Sea Scrolls using radiocarbon and palaeographic datings. Various fragments of the Dead Sea Scrolls were radiocarbon dated in 1991[39] and more recently in 1995.[40] Comparing the palaeographic and radiocarbon dating of the scrolls, the study published in 1991 concluded that:

Our research put to test both the radiocarbon method and palaeography; seemingly, both disciplines have fared well.[41]

Similar conclusions were also reached by the 1995 study. It says:

Ages determined from 14C measurements on the remainder of the Dead Sea Scroll samples are in reasonable agreement with palaeographic estimates of such ages, in the cases where those estimates are available.[42]

It must be borne in mind that the conclusions of these two studies are based on the confidence level of 1s (or 68%).[43] In other words, in 68% of the cases the date will be within a particular range. If the range is increased from 1s to 2s, the percentage can be increased from 68% to 95%. Consequently, it will also effect the overall agreement between radiocarbon and palaeographic datings.[44]

4. Conclusions

The radiocarbon dating of Qur'anic manuscripts in the literature is very rare as this technique is not only very expensive but also provides a wide range of calendar years in which a particular manuscript could have been written. Just as no technique is perfect radiocarbon dating is no exception. There are a number of factors that can affect the accuracy of the result, including sample type, sample size, sample handling and the 14C to 12C ratio (calibration data).

As for the examples of carbon-dated manuscripts, the E 20 manuscript housed in the St. Petersburg branch of the Institute of Oriental Studies was discussed in detail. This manuscript is palaeographically dated to around the final quarter of the 8th century CE. The carbon dating, depending upon the confidence levels, yields a variety of time periods. A 95.4 % confidence level (2s) yields 775 CE - 995 CE. The "Great Umayyad Qur'an" or the al-Walid Manuscript from Maktabat al-Jami‘ al-Kabir in San‘a' (Yemen), is carbon-dated to between 657 and 690 CE. Using palaeography, ornamentation and illumination, H-C. Graf von Bothmer dated it to the last decade of the 1st century of hijra, around 710 - 715 CE, in the reign of the Umayyad Caliph al-Walid. Folios from a monumental Qur'anic manuscript in Kufic script on vellum attributed to Caliph ‘Uthman with a size of approximately 55 cm x 70 cm were auctioned by Christie's (London) in 1992 and 1993. The carbon-dating of this manuscript was carried out at Oxford, the results of which show a 68% probability of a date between 640 CE and 765 CE, and a 95% probability of a date between 595 CE and 855 CE. Although the dates generated by the radiocarbon dating at either confidence level do not rule out the possibility that this manuscript was produced in ‘Uthman's time, palaeographic studies suggest an 8th century (2nd century hijra) date.

It is interesting to note that the palaeographic and the radiocarbon datings sometimes nearly match each other. Radiocarbon dating can't replace the traditional time-tested method of palaeography. Radiocarbon dating can only supplement the "traditional" palaeography and is rarely used in dating.[45] In fact, von Bothmer points out that the radiocarbon dating is not only expensive but also has the results scattered over a long time period,[46] sometimes spanning a few hundred years. He suggests that the "traditional" methods of Arabic palaeography are more precise and offer a smaller range for dating the Qur'anic manuscripts. Whilst proposing a new data-base method for collating, schematising and dating early Qur'anic manuscripts, Efim Rezvan laments at the methodological stagnation in accurately dating early Qur'anic manuscripts. With regard to modern-physical methods such as radiocarbon dating, he states:

Modern physical methods make it possible to date various kinds of written materials with an margin of error of 100-200 years either way. Hence, we cannot rely on these methods. It is our hope that the analysis of a great number of manuscripts using the data-base will enable us to find some new grounds for dating.[47]

Similar conclusions have also been reached by Gerd-R. Puin who states:

Because determining the age of the parchment itself by scientific methods is still very inaccurate - the margin of error being ± 100 - 200 years! - an art historical approach, in this case, seems to be more suitable.[48]

And Allah knows best!


References & Notes

[1] W. F. Libby, E. C. Anderson & J. R. Arnold, "Age Determination By Radiocarbon Content: World-Wide Assay Of Natural Radiocarbons", Science, 1949, Volume 109, pp. 227-228; J. R. Arnold & W. F. Libby, "Age Determination By Radiocarbon Content: Checks With Samples Of Known Age", Science, 1949, Volume 110, pp. 678-680.

[2] R. E. Taylor, Radiocarbon Dating: An Archaeological Perspective, 1987, Academic Press, Inc.: Orlando (FL), pp. 169-170. The text of the 1960 Nobel Prize in Chemistry awarded to Williard F. Libby for development of the 14C dating technique is given on p. 170.

[3] ibid., p. 6.

[4] ibid., pp. 7-9.

[5] ibid., p. 9.

[6] ibid., p. 9.

[7] ibid., pp. 16-34.

[8] H. E. Suess, "Radiocarbon Concentration In Modern Wood", Science, 1955, Volume 122, pp. 415-417.

[9] R. E. Taylor, Radiocarbon Dating: An Archaeological Perspective, 1987, op. cit., p. 98.

[10] ibid., pp. 90-95.

[11] ibid., pp. 86-90.

[12] M. Stuiver & H. A. Polach, "Discussion: Reporting Of 14C Data", Radiocarbon, 1977, Volume 19, No. 3, pp. 355-363.

[13] H. de Vries, "Atomic Bomb Effect: Variation Of Radiocarbon In Plants, Shells, And Snails In The Past 4 Years", Science, 1958, Volume 128, pp. 250-251; Also see R. E. Taylor, Radiocarbon Dating: An Archaeological Perspective, 1987, op. cit., pp. 37-38.

[14] E. A. Rezvan, "Yet Another “‘Uthmanic Qur'an” (On The History Of Manuscript E 20 From The St. Petersburg Branch Of The Institute Of Oriental Studies", Manuscripta Orientalia, 2000, Volume 6, No. 1, pp. 49-68.

[15] E. A. Rezvan, "On The Dating Of An “‘Uthmanic Qur'an” From St. Petersburg", Manuscripta Orientalia, 2000, Volume 6, No. 3, pp. 19-22.

[16] ibid., pp. 20 and 21.

[17] E. A. Rezvan, "The Qur'an And Its World VI. Emergence Of A Canon: The Struggle For Uniformity", Manuscripta Orientalia, 1998, Volume 4, No. 2, p. 26.

[18] F. Déroche, "Note Sur Les Fragments Coraniques Anciens De Katta Langar (Ouzbékistan)", Cahiers D'Asie Centrale, 1999, Volume 7, p. 70.

[19] H-C. G. von Bothmer, "Masterworks Of Islamic Book Art: Koranic Calligraphy And Illumination In The Manuscripts Found In The Great Mosque In Sanaa", in W. Daum (ed.), Yemen: 3000 Years Of Art And Civilization In Arabia Felix, 1987?, Pinguin-Verlag (Innsbruck) and Umschau-Verlag (Frankfurt/Main), pp. 180-181; idem., "Architekturbilder Im Koran Eine Prachthandschrift Der Umayyadenzeit Aus Dem Yemen", Pantheon, 1987, Volume 45, pp. 4-20; M. B. Piotrovsky & J. Vrieze (Eds.), Art Of Islam: Heavenly Art And Earthly Beauty, 1999, De Nieuwe Kerk: Amsterdam & Lund Humphries Publishers, pp. 101-104; H-C. G. von Bothmer, K-H. Ohlig & G-R. Puin, "Neue Wege Der Koranforschung", Magazin Forschung (Universität des Saarlandes), 1999, No. 1, p. 45.

Also published in Masahif San‘a', 1985, Dar al-Athar al-Islamiyyah: Kuwait, p. 45.

[20] Memory Of The World: San‘a' Manuscripts, CD-ROM Presentation, UNESCO.

[21] H-C. G. von Bothmer, K-H. Ohlig & G-R. Puin, "Neue Wege Der Koranforschung", Magazin Forschung (Universität des Saarlandes), 1999, op. cit., p. 45. Hans-Casper Graf von Bothmer says:

Gestützt auf architektur- und ornamentgeschichtliche Argumente, zu denen u.a. kodikologische und paläographische Überlegungen kamen, habe ich diese Handschrift in das letzte Jahrzehnt des ersten Jahrhunderts H. - etwa in die Jahre 710-15 n.Chr. - ans Ende der Regierungszeit al-Walids datiert. Eine später, und ohne Kenntnis meiner Datierung durchgeführte naturwissenschaftliche Untersuchung nach der C14-Methode hat nach dem noch unveröffentlichten Untersuchungsbericht, als kalibriertes Ergebnis einen Entstehungszeitraum "zwischen 657 und 690", be stimmt. Ist damit die Datierung mittels kunsthistorischer Methoden in Frage gestellt? Ich denke nicht.

Noting that the E20 Manuscript and the Samarqand Manuscript produce a range of 220 years and 260 years respectively at the 95% confidence level, Sheila Blair is suspicious of the low range reported by von Bothmer, noting it is only 33 years in length. Furthermore, she complains that the testing facility and standard deviations (confidence levels) are absent. See S. S. Blair, Islamic Calligraphy, 2006, Edinburgh University Press Ltd: Edinburgh (Scotland), p. 125 and p. 139, footnote 95. Hans-Casper von Bothmer is currently preparing a voluminous tome on the San‘a' manuscripts. Any judgements as to the soundness and completeness of the results reported above will be resolved by the publication of this volume.

[22] M. B. Piotrovsky & J. Vrieze (Eds.), Art Of Islam: Heavenly Art And Earthly Beauty, 1999, op. cit., p. 101.

[23] E. Whelan, "Writing the Word of God: Some Early Qur'an Manuscripts And Their Milieux, Part I", Ars Orientalis, 1990, Volume 20, pp. 119-121 for the discussion on "Group 2" manuscripts and Figs. 19-22 on pp. 146-147.

[24] B. Moritz (Ed.), Arabic Palaeography: A Collection Of Arabic Texts From The First Century Of The Hidjra Till The Year 1000, 1905, Publications of the Khedivial Library, No. 16, Cairo, See Pls. 19-30.

[25] E. Whelan, "Writing the Word of God: Some Early Qur'an Manuscripts And Their Milieux, Part I", Ars Orientalis, 1990, op. cit., p. 120.

[26] B. Moritz (Ed.), Arabic Palaeography: A Collection Of Arabic Texts From The First Century Of The Hidjra Till The Year 1000, 1905, op. cit., see the legends of Pls. 19-30.

[27] J. von Karabacek, "Arabic Palaeography", Vienna Oriental Journal (Wiener Zeitschrift Für Die Kunde Des Morgenlandes), 1906, Volume 20, p. 136.

[28] Islamic Art, Indian Miniatures, Rugs And Carpets: London, Tuesday, 20 October 1992 at 10 a.m. and 2.30 p.m., Thursday, 22 October 1992 at 2.30 p.m., 1992, Christie's: London, p. 88 (Lot 225); Islamic Art, Indian Miniatures, Rugs And Carpets: London, Tuesday, 20 October 1992 at 10 a.m. and 2.30 p.m., Thursday, 22 October 1992 at 2.30 p.m., 1992, Christie's: London, p. 89 (Lot 225A); Islamic Art, Indian Miniatures, Rugs And Carpets: London, Tuesday, 19 October 1993 at 10.30 a.m. and 2.30 p.m., Thursday, 21 October 1993 at 2.30 p.m., 1993, Christie's: London, p. 20 (Lot 29); Islamic Art, Indian Miniatures, Rugs And Carpets: London, Tuesday, 19 October 1993 at 10.30 a.m. and 2.30 p.m., Thursday, 21 October 1993 at 2.30 p.m., 1993, Christie's: London, p. 21 (Lot 30).

[29] Islamic Manuscripts, 2000, Catalogue 22, Sam Fogg: London, pp. 8-9; Islamic Calligraphy, 2003, Catalogue 27, Sam Fogg: London, pp. 12-13.

[30] A. Jeffery & I. Mendelsohn, "The Orthography Of The Samarqand Qur'an Codex", Journal Of The American Oriental Society, 1942, Volume 62, p. 195.

[31] op. cit.

[32] F. Déroche, "Note Sur Les Fragments Coraniques Anciens De Katta Langar (Ouzbékistan)", Cahiers D'Asie Centrale, 1999, op. cit., p. 65.

[33] Islamic Art, Indian Miniatures, Rugs And Carpets: London, Tuesday, 20 October 1992 at 10 a.m. and 2.30 p.m., Thursday, 22 October 1992 at 2.30 p.m., 1992, op. cit., p. 88 (Lot 225). Also see F. Déroche, "Manuscripts Of The Qur'an" in J. D. McAuliffe (Ed.), Encyclopaedia Of The Qur'an, 2003, Volume 3, Brill: Leiden & Boston, p. 261; Islamic Calligraphy, 2003, Catalogue 27, op. cit., p. 12. Sam Fogg's catalogue contains a typographical error here. It reads 640-705 CE instead of 640-765 CE.

[34] E. A. Rezvan, "On The Dating Of An “‘Uthmanic Qur'an” From St. Petersburg", Manuscripta Orientalia, 2000, op. cit., p. 19.

[35] Islamic Art, Indian Miniatures, Rugs And Carpets: London, Tuesday, 20 October 1992 at 10 a.m. and 2.30 p.m., Thursday, 22 October 1992 at 2.30 p.m., 1992, op. cit., p. 88 (Lot 225).

[36] Islamic Art, Indian Miniatures, Rugs And Carpets: London, Tuesday, 20 October 1992 at 10 a.m. and 2.30 p.m., Thursday, 22 October 1992 at 2.30 p.m., 1992, op. cit., p. 88 (Lot 225); Islamic Art, Indian Miniatures, Rugs And Carpets: London, Tuesday, 20 October 1992 at 10 a.m. and 2.30 p.m., Thursday, 22 October 1992 at 2.30 p.m., 1992, op. cit., p. 89 (Lot 225A).

[37] Islamic Art, Indian Miniatures, Rugs And Carpets: London, Tuesday, 19 October 1993 at 10.30 a.m. and 2.30 p.m., Thursday, 21 October 1993 at 2.30 p.m., 1993, op. cit., p. 20 (Lot 29); Islamic Art, Indian Miniatures, Rugs And Carpets: London, Tuesday, 19 October 1993 at 10.30 a.m. and 2.30 p.m., Thursday, 21 October 1993 at 2.30 p.m., 1993, op. cit., p. 21 (Lot 30).

[38] Islamic Manuscripts, 2000, Catalogue 22, op. cit., pp. 8-9; Islamic Calligraphy, 2003, Catalogue 27, op. cit., pp. 12-13.

[39] G. Bonani, M. Broshi, I. Carmi, S. Ivy, J. Strugnell, W. Wölfli, "Radiocarbon Dating Of Dead Sea Scrolls", ‘Atiqot, 1991, Volume 20, pp. 27-32; G. Bonani, S. Ivy, W. Wölfli, M. Broshi, I. Carmi & J. Strugnell, "Radiocarbon Dating Of Fourteen Dead Sea Scrolls", Radiocarbon, 1992, Volume 34, No. 3, pp. 843-849. These dates were also reproduced by James VanderKam in The Dead Sea Scrolls Today, 1994, William B. Eerdmans Publishing Company: Grand Rapids (MI), p. 18, Table I. For a complete discussion see pp. 17-18.

An overview of radiocarbon dating in 1991 was given by Hershel Shanks. See H. Shanks, "Carbon-14 Tests Substantiate Scroll Dates", Biblical Archaeology Review, 1991, Volume 17, No. 6, p. 72.

Perhaps the earliest 14C dating on the Dead Sea Scroll material was done by Libby. He dated the linen wrapping the scroll and determined the value to be 1917 ± 200 BP. See W. F. Libby, "Radiocarbon Dates, II", Science, 1951, Volume 114, p. 291.

[40] A. J. T. Jull, D. J. Donahue, M. Broshi & E. Tov, "Radiocarbon Dating Of Scrolls And Linen Fragments From The Judean Desert", Radiocarbon, 1995, Volume 37, No. 1, pp. 11-19; A. J. T. Jull, D. J. Donahue, M. Broshi & E. Tov, "Radiocarbon Dating Of Scrolls And Linen Fragments From The Judean Desert", ‘Atiqot, 1996, Volume 28, pp. 85-91.

Hershel Shanks provided an overview of this dating. H. Shanks, "New Carbon-14 Tests Leave Room For Debate", Biblical Archaeology Review, 1995, Volume 21, No. 4, p. 61.

[41] G. Bonani, M. Broshi, I. Carmi, S. Ivy, J. Strugnell, W. Wolfli, "Radiocarbon Dating Of Dead Sea Scrolls", ‘Atiqot, 1991, op. cit., p. 31.

[42] A. J. T. Jull, D. J. Donahue, M. Broshi & E. Tov, "Radiocarbon Dating Of Scrolls And Linen Fragments From The Judean Desert", Radiocarbon, 1995, op. cit., p. 17.

For a dissenting view on the radiocarbon studies, see J. Atwill, S. Braunheim & R. Eisenman, "Redating The Radiocarbon Dating Of The Dead Sea Scrolls", Dead Sea Discoveries, 2004, Volume 11, No. 2, pp. 143-157.

[43] Commenting on the "lack" of radiocarbon dating of the Qur'anic manuscripts, the Christian missionary Joseph Smith says:

To begin with, they test the age of the paper on which the manuscript is written, using such chemical processes as carbon-14 dating. This is adequate for recent documents such as the Qur'an, as precise dating of between +/-20 years is possible.

Perhaps this missionary is unaware that the "precision" of a 14C dating is based on confidence levels. The value of "precision" ±20 years is meaningless when the confidence level, whether it is 1s or 2s, is not specified.

[44] A. J. T. Jull, D. J. Donahue, M. Broshi & E. Tov, "Radiocarbon Dating Of Scrolls And Linen Fragments From The Judean Desert", ‘Atiqot, 1996, op. cit., Table I, p. 86. Table I gives the dating range for 1s and 2s confidence levels. The palaeographic dating is given in Table II on p. 88.

The results of the 1995 radiocarbon dating of the Dead Sea Scrolls were described as "too gross and iffy to settle any arguments". See H. Shanks, "New Carbon-14 Tests Leave Room For Debate", Biblical Archaeology Review, 1995, op. cit., p. 61.

[45] The rarity of radiocarbon dating for manuscripts is due to its inaccuracy and consequently its unenthusiastic support by palaeographers; therefore, it is rarely used. François Déroche says:

Establishing a date for the earliest copies is thus dependent upon palaeographic studies, dating the decorations or, in rare cases, upon scientific methods such as Carbon-14 dating.

See F. Déroche, "Written Transmission" in A. Rippin (Ed.), The Blackwell Companion To The Qur'ān, 2006, Blackwell Publishing Limited, p. 176.

[46] H-C. G. von Bothmer, K-H. Ohlig & G-R. Puin, "Neue Wege Der Koranforschung", Magazin Forschung (Universität des Saarlandes), 1999, op. cit., p. 46, note 39. The text in German reads:

Es wird oft gefragt, ob nicht derartige Untersuchungen zuverlässigere Ergebnisse brächten als die geisteswissenschaftlichen, und deshalb öfter herangezogen werden sollten. Dagegen spricht einmal, dass sie sehr kostspielig sind (die Bestimmung einer Probe kostet rund tausend Mark). Zum anderen ist die Unschärfe der Ergebnisse meist weitaus größer als in diesem Fall, und zumal bei Anwendung "traditioneller" Methoden.

[47] E. A. Rezvan, "The Qur'ān: Between Textus Receptus And Critical Edition", in J. Hamesse (Ed.), Les Problèmes Posés Par L'Édition Critique Des Textes Anciens Et Médiévaux, 1992, Institut D'Etudes Médiévales De L'Université Catholique De Louvain, p. 300; Also see E. A. Rezvan, "The Data-Base On Early Qur'an MSS: New Approach To The Text History Reconstruction", in A. Ubaydli & A. Brockett (Org.), Proceedings Of The 3rd International Conference And Exhibition On Multi-Lingual Computing (Arabic And Roman Script), 1992, The Documentation Unit, The Centre For Middle Eastern And Islamic Studies: University of Durham (UK), p. 3.3.4. These two essays are nearly identical in content.

Even more recently, one should take heed of Blair's insistence on utilising a more comprehensive approach than is currently the case, insisting that the adoption of multi-disciplinary sophistication will help to solve the disputes on dating early Qur'anic manuscripts. See S. S. Blair, Islamic Calligraphy, 2006, op. cit., p. 128.

[48] G-R. Puin, "Methods Of Research On Qur'anic Manuscripts - A Few Ideas" in Masahif San‘a', 1985, op. cit., p. 10.

M S M Saifullah, Ghali Adi & ‘Abdullah David

© Islamic Awareness, All Rights Reserved.

Last Updated ( Tuesday, 14 November 2006 )
 
< Prev   Next >
Contact Us
The Miraculous Quran